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The temperature dependence of rotational tunnelling,
modelled with a harmonic substitute system
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Institut fiir Theoretische Physik I, Universitit Erlangen, StaudtstraBe 7, 8520 Erlangen, Federal
Republic of Germany '

Received 1 April 1993

Abstract. In 1950, Hiiller modelled the temperature dependence of the inelastic lines of
the tunnelling spectrum of methyl groups, measured by neutron scattering, using a harmonic
substitution systern as a replacement for the methyl group. The results obtained there are based
on & comulant expansion that has been resiricied to the first two cumulanis for a simplified
version of the solation of the equation of motion for the o operator, lacking time ordering.
In order to verify the results, we perform the cumulant expansion up to second order including
time ordering, and also compute the third and fourth cumulants, but without considering time
ordering. Using simple crystal models, we show that the time-ordering symbol may in fact be
neglected and that higher cumulants become important anky when the density of states is sharply
peaked. With the Debye density of states it turns out that for very low temperatures the shift
of the inelastic lines is proportional to T4, whereas the width increases proportionally to T7.
Finally, we present results for the quasielastic line and discuss the mechanism that causes the
shift and broadening of the inelastic lines,

1. Introduction

In this paper we are concerned with the rotational tunnelling of methyl groups that are
embedded in a solid crystal. A methyl group has three indistinguishable protons. Hence,
in principle, its quantum state should be completely antisymmetrized. However at the
temperatures we are interested in (77 < 50K), the excitation energies for the axial and
tangential vibrations of these protons are much higher than the temperature. The protons are
extremely localized at the end of their valence bonds with the carbon of the CHz molecule.
Further, we can safely neglect the overlap of the spatial part of the wavefunctions of the
three protons, i.e. the only effect of antisymmetrization that needs to be included in this
limit is the (very small) tunneiling splitting. Therefore we may consider the group to be
rigid. As the barrier for a collective rotation of the three protons is rather low with respect
to the temperature range of interest, the rigid group is not entirely fixed in position, but
has a single degree of freedom, the rotation angle ¢. The potential barrier V' of rotation is
necessarily %:r-periodic in ¢. Taking only the lowest Fourier component of V leads to a
cos 3¢ potential and thus to the Mathieu problem [1].

The inelastic lines of the tunnelling spectrum of methyl groups, measured by means of
neutron scattering [2] or NMR spectroscopy, originate from transitions between the A- and
E-symmetric states of the methyl group, which differ slightly in energy. As the methyl
group is always part of a solid crystal, the measured energy spectra reflect the properties of
the full system rather than those of an isolated (single) methyl group.

In this paper we restrict the discussion to model crystals which contain no impurities
such as paramagnetic ions, and which show no other kind of excitation than iattice vibrations
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(phonons). In this case the eigenstates of the composite system have a definite (either A
or E) syminetry. Therefore, the symmetry of the actual state of the system can only be
changed by some external agent, such as neutrons. In neutrom scattering experiments the
change of energy that is connected with the transition to a state of different symmetry is
transferred to the neutron and measured by some spectrometer. It has been observed [2]
that at almost zero temperature the spectrum consists of two sharp inelastic lines at ~w
and 4o, where we call & the zero-temperature tunnel frequency, and another sharp line at
zero energy, called the quasielastic line. When the temperature is raised, the inelastic lines
shift towards zero energy and become broader. The quasielastic line does not shift, but also
becomes broader. In general, the inelastic lines are broader than the quasielastic line.

In this paper we consider the temperature dependence of the inelastic lines and the
quasielastic line separately, using different models. In both cases the methyl group is not
treated as a Mathicu problem [1], but is substituted by a harmonic system, which is then
coupled to a harmonic crystal.

These models are not new [3,4], but here we treat them in more detail. In particular,
we look for an interpretation of the shift and broadening of the inelastic tunnel lines within
our model description.

2. The model for the inelastic lines

Due to the C3 symmetry of the methyl group, its eigenstates can be characterized by a Cs
symmetry label (A, E%, E?) and a discrete index n [1]. The E%” states are degenerate.
The actual symmetry of the eigenstate of the isolated methyl group is a time-independent
quantity that can only be changed by the influence of some external agents such as neutrons.
The substitute shall share these properties. It is constructed to be a composed system
consisting of a pseudospin and a harmonic oscillator with pseudospin-dependent frequency.
The pseudospin states are taken to be analogous to the A- and E-symmetric states, but in
the model no distinction is made analogous to £% and E®. The Hamiltonian is given by

2
=Po Mo ]
Hg:z”;-i--igoqo-l‘(dz—-z-)v

Q2.1
pz
V=-Atel
2m

where pg and gg denote the momentum and position operators of the oscillator which is
substituted for the methyl group, and o, is the operator of the pseudospin z-component with
eigenvalues +£1/2. The eigenenergies of Hy are

E(n, ) = Q0+ 1)

(2.2)
E(n,))=A+/(1-€)Qn+1i) >0
where we have set = 1. We define ‘tunnel frequencies’ by
wp = B0, 1) = EQ0,1) = A+ 3Q(/ (1~ €)= 1)
(2.3)

ol =E>1, ) - E1NH=A+i0-e)~1)



The temperature dependence of ratati;onal tunnelling 8533

and adjust w}, ] and the ‘libration frequency’ € of the model to the values of the
corresponding lowest two tunnel frequencies and the libration frequency of the original
methyl group, respectively. All model parameters (A, £, ¢) are thereby uniquely,
determined. As for methyl groups, wj is greater than wf, and ¢ is a positive quantity.

Having substituted the methyl group by an appropriate model based on the harmonic
oscillator, we can now easily build the substitute into a lattice of harmonically bound
particles without intenal degrees of freedom. The harmonic substitute will be considered
as a lattice particle itself {with coordinates gg and po), but with a mass that depends on the
pseudospin state. The corresponding Hamiltonian is given by

N 2 N
p 1
HEZZ?’: +zzz¢y_uq;;q»l+(o-z )V
u=0 M u=0 v=0
r (2.4)
V=-nt+ell

2m0 )

The mass of the zeroth particle is #g for all spin-up states (A-state analogues} and meg/(1—¢)
for all spin-down states (E-state analogues). As V depends only on the momentum pg of
the zeroth particle, this model is translation-invariant if we require }_, ®,, = O for the
symmetric matrix ®. The inclusion of a term BqG /2mg, which means the introduction of a
spatially fixed potential, would destroy the translational invariance and lead to an unphymcal
frequency dependence of the phonon coupling.

The Hilbert space on which Hp acts is the tensor product of the infinite-dimensional
harmonic oscillator space and the two-dimensional spin space. In the following we use the
normal coordinates

N
P, = Z(s ')#w Qu =Y (S VMg (2.5)

=0 =0

where the orthogonal transformation matrix S, diagonalizes the matrix ®,,, /. /M. m,. With
the raising and lowering operators

Py P
a;' = \/_(Qu l-{;ﬂ—) a, = \/%-_“(Q# + 1;3) (2.6)

the transformed Hamiltonian is

. N
H=H +(, -3V  H.=Y oala,+13) @7
=0

V==A + Zw#SU# i qu/wnvagﬂSol,@a ay ~—a ;"maﬂa,,).

u=0 y=0

3. The correlation function

In the pseudospin formalism the spin-dependent part of the neutron scattering operator,
which induces transitions between A- and E-states of the methyl group, is replaced by the
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raising and lowering operators of the pseudospin. Therefore the neutron scattering spectrum
is the Fourier transform of the correlation function

{or(Do_(0)) _ Truow (o (0)e2H}

0= @@ ~ Trulos @o- @)

3.1
with
a.(t) = g (0)eiH! (3.2)

where o, and o_ are the spin raising and lowering operators, respectively. The trace Try
in (3.1) is taken over the Hilbert space of A, which is the product space of the lattice space
and the pseudospin space.

We obtain C(t} through the Heisenberg equation of motion for o..(¢):
64+(2) = (1/D)ow (1), H] =iV (D)o (1) (3.3)

with V(¢) = &' Ve i#7_ It has the solution

i ()=T exp(i f ‘ dtV(r))oq_(O) (3.4)
0

where T denotes Dyson’s time-ordering symbol. As A does not flip the spin component of
any product state, we may remove the spin-flip operators by inserting (3.4) into (3.1) and

obtain
t
C() = (T exp(if dr V(r))) (3.5)
0 L
with
_ Tnf - e A}
(')L = W (3.6)

the trace being taken only over the lattice states. In the following we omit the subscript L.
Noting that the a*a* and aa terms in (2.7) only lead to oscillating contributions, we may
approximate (3.5) by

N ¢
Ci) = exp[i(—A + %ZwﬂSgn)tKT exp(fo der(r))) 3.7
#=0

with
N
Vi@ =i  SuSai e (3.8)
=0
where
S, = [22s,, (3.9)
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and

a,(t) = a, e (3.10)
have been used. We solve (3.7) using a cumulant expansion, defined by

(T re.xp(fr dr Vl(r))) = exp(i C,,(:)). (3.11)
o0

n=]

The evaluation of the C,; goes as follows. The average

(1 /n!)(T ( fo ,ZSMSua:(r)au(r)dr)n)

which is the nth term in the series expansion of the left-hand side of (3.11), consists of
all sums of producis of two-operator contractions of the creation and destruction operators,
where the contraction of two operators o;(#;) and aa(f:), o; being either a creation or
destruction operator, is just the time-ordered average (T'c;(f1)aa(f2)}). This follows from
Wick’s theorem 15,6]. Now to obtain C, we drop all terms that contain two different time
variables #, #; that are not ‘connected’ by a contraction {Te, (#;)a.(#;)}. For example, a
term of the form

{Tor (tYaa ()} (Toalt daa ()

contributes to the second cumulant C5, whereas the term
(Tor (e (e T as(t)aa(f2)}

does not. For a more detailed description in terms of connected graphs see [6]. Fortunately
only very few terms withstand this elimination procedure, which greatly simplifies the
evaluation of higher cumulants,

The first cumulant is given by

t N N
Ci(t) = if dr Z S,,;S,,{a;'(r)au(r)) =it ESﬁﬁ,‘ (3.12)
0 pav=0 C u=0
with
n, = (a# a#} = W (3.13)

For a periodic crystal we can use the fact that the modes o are completely characterized
by a branch index £ = 1, ..., % and a wavevector g from the first Brillouin zone, As the
function w; (g), which relates the wavevector ¢ to the mode frequency « for a given branch
index ¢, approaches a continuous function for a macroscopic crystal, we may approximate
the sums over ¢ by integrals over @. To this end we introduce the density of states g; ()
and write Sp; (w) instead of Sp,. Inserting (3.9} into (3.12) we-obtain

Ci(t) = it% f dwg(w)Sg(w)wﬁ(w) (3.14)
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where for notational convenience we take account only of a single phonon branch.
The second cumulant is given by

Colt) = = f a f 0 3 3 5.8,5,8, (T et ()as () (Ta ()t (). @3.15)

uy oo

With the identity

{Tay (t1)as () = [y + Btz — )18, (3.16)

equation (3.15) becomes

! t
Calt) = —= Z S2sim,m, f dry f dip e @a—m) (=0
0 0
! fi .
-y S2 8%, f dn f dp e¥en=andin=t), (3.17)
v 0 0
Since we are interested in C(¢) for long times only, we may write for the time integrals

4 wt
f d, f dry et = sm —2-"'21rir18(w)

t h . 2 Lwt i . t
f dn f dry et ) = — sin® — + —[er —sin(wt)] = 7|118(w) +1—.
0 0 @ 2 w @
Inserting these approximations into the continuum version of (3.17), this yields

G0 = T f do §2(@) SHw)e? (@) + ()]

1
e f doo [ don g SHFleDw i) —r-.  (18)

The third and fourth cumulant are computed in a similar fashion, but in order to avoid

technical complications we neglect Dyson’s time-ordering symbol in (3.4). The resulting
approximate expressions are

Ci(t) = ———t f dw g*(0)S§{(w)e’ (27 (@) + 37%(w) + A(w)]

. (3.19
Ca(t) = —|:| do g* ()53 ()* [6F (W) + 127 (@) + TiX(w) + ()] .

With these results the correlation function (3.5) becomes

Y=EV2—V4 (3.20)
= _
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with
To=A— fdwg(m)sg(m)m
| = - f dew g () S2 (@) whi(w)
1 (3.21)
Wy = —62[w1 fda)z g(cul)g(q)z)sg(@l)Sg(wz)wlwzﬁ(wl)w -
B = e f dw g3 () S5 (@)@’ (27> (w) + 37> (@) + T(w)]
and
7, =3¢ [ 402w + @)
\ (3.22)
it f ds g*() S8 () @*[67* () + 127 () + TR () + F(w)].

The Fourier transform of the correlation function (3.20) is a Lorentzian of width ¥ centred
at w. In (3.21) @ is the zero-temperature tunnel frequency. The quantities @, @2 and @3
represent the temperature-dependent contributions of the first, second and third cumulant,
respectively, to the shift of the tunnel line. The term @; is not present in [3), because
Dyson’s time-ordering symbol had been neglected there. The contributions of the second
and fourth cumulant to the tunnel widih are given by ¥, and 7, respectively.

4. Crystal models

In this section we wish to calculate the frequency and width of the inelastic tunnel line as
given by (3.21) and (3.22) for two simple crystal models. We start with the density of states
of the Debye model for a three-dimensional crystal

3N
glw) = ;3—.;02 4.1)
D

where wp is the cut-off frequency and N is the number of crystal atoms. We identify the
cut-off frequency wp with the ‘libration” frequency $p of the harmonic model that mimics
the methyl group, i.e. we set £g = wp. We also assume that all modes couple to the zeroth
particle with the same strength: '

1
Si =, 4.2
o{w) TN (4.2)

Inserting this in (3.21), we obtain
=A— —ea)D 4.3)
and A
' 4 4 T4

_ T4 . T
D) = ——%e'w—%g4,'1 (wp/T) = -3¢ gl"("-)é’(“) TP @
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where we have introduced the function

X m=1
tmatr)= [y T 45)

The approximation in (4.4) is valid for temperatures well below the cut-off frequency wp.
In an analogous manner we compute @, @s:

_ 374 9 T3 9T1°
@y = 2(4 —5 &1 (wp/T) + -gé’s 2{wp/T) *t3 P —5 86,1{wp/T)
wp

917 [elT x8 wp —xT
. dx 1 4.6
Aoy A &1 xT ) @6
3 2T"
Wy = e’n ——[2810 3{wp/T) + 3gw.2(wn/T) + g101(wp/T)] 4.7)

and the widths ¥, and ¥;;

T7
V2= gme —[37 2(wn/T) + g7 (wp/T)] = Ex'e 2(0—6 (48)
D

13
Py = 2254;:37[6&3,4@9”) +12g13,3(wp/T) + 7g13.2(wp/T) + 8131 (wp/T)}  (4.9)
Wy

with the approximation in (4.8) being valid for temperatures well below wp.

=3
1.0+ 1073—
0.3-10";
0.6-10~% :—
04207 Figure 3. The tunnel frequency as a
N function of temperature. The full curve
0.2.107% - shows the tunnel frequency @, including all
N contributions. The dotted curves display the
o 4— contributions %z and w3 from the second
|«]|l|l|l»|||||~lt}?llpl:lul.ll.ILuLan and third cumulant, respectively, and the
0 0.05 0.19 015 o2z  approximation of the shift by a T* law.

For the purpose of a plot we set 2y = | and take a methy] group which has the tunnel
frequencies [3]

w} = 0,001 ot =—0.029 . (4.10)

With these values we get the model parameter A = 0.016 from (2.3). In order to obtain
wg as the tunnel frequency at zero temperature, we do not use (2.3) to evaluate ¢, Instead,
we use (4.3) which accounts for the zero point energy of the lattice and obtain ¢ = 0.08.
Figures 1 and 2 show the tunnel frequency @ and the tunnel width 7. The contributions @,
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el

WY

x.u'm"-f:
'—

Figure 2. The tunnel width as a

03-187 function of temperature. The full curve

shows the unnel width ¥, including

all contributions. The dotted curves

display the contribution ¥, from the

T A e 7 fourth cumulant and the approximation

0 - 0.05 0.10 .15 0.20 of the shift by a T7 law.

3 and ¥, are also displayed in order to demonstrate that their influence can be neglected.
It can be seen that the approximation @; o T* is quite good over the whole temperature
range where the tunnel frequency is non-negative, whereas the width 7 increases as T7 only
for temperatures up to (.1. From the figures it follows that neither the inclusion of time
ordering in the calculation of the second cumulant nor the third and fourth cumulant have
a significant impact on the results when the density of states of the Debye model is used.

A somewhat different situation arises when a sharply peaked density of states is inserted
in (3.21) and (3.22). A peaked density of states does not affect @g, @), and @; very much,
but @i, ¥, and ¥, will yield much higher values than those that are obtained from the
Debye model. This is due to the fact that the density of states is taken to a power greater
than unity in the formulae for these latter quantities.

We estimate the minimum acceptable width of the phonon band by using the density of
states :

§lw) = ag—u[e(w — Q0o(1 — 1)) — B(w — (1 + J0))] (4.11)

which is constant in the range Qy(1 = %a) and zero elsewhere, where « is the relative width
of the phonon band. For a small bandwidth ¢ we insert (4.11) into (3.21) and (3.22) to
obtain -

B = —-gszoﬁ(szo) | (4.12)

For temperatures well below the libration frequency £, we may approximate the shift and
width of the tunnel ling by an Arrhenius law with common activation energy Qo:

-0/ ¥y = imela Qe /T, (4.13)

W = —%éﬂoe
From (4.12) it follows that the maximum occupation number 7(£2q) for which the wnnel
frequency is non-negative is given by

- 2A 1
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The relative contribution of the third cumulant to the shift of the tunnel line is given by

= im2ela™? (277 () + IA(Qo) + 1] (4.15)

and the relative contribution of the fourth cumulant to the width is expressed by

Vs
P2

2

2,,-2 67 () + 127(Q0) + TA(S0) + |
1+ 72(S2) '

=L
= ghE

(4.16)

With the methyl group tunnel frequencies (4.10) the minimum phonon bandwidth for
which the above ratios (4.15) and (4.16) are less than 20% over the whole temperature range

that leads to positive tunnel frequencies turns out to be ¢min = 0.2, The tunnel frequency
is zeroat T >~ 0.3,

5. The quasielastic line

A harmonic mode] for the quasielastic line is presented in [4]. It is based on transitions
between E°- and E°-state analogues. We use the result [4]

N
Hgy = Zg_,- (cosa;megp + 20, sine; po)g;.
i=1

The tunnelling width is computed in the same way as for the inelastic line, via a cumulant
expansion. The first and third cumulants are zero. The width resulting from the second
cumulant is

Ty =4r f do g*(w)Sa () H (w)n(@)[1 + n(w)] (5.1)
and the fourth cumulant contributes
Ty = -ia° f dw g*(w) S5 (0) H* (@) [6n* (@) + 1203 () + Tn*(w) + n(w)] (5.2)

where we use the definition

N

H(w)=Co Y _ 8§Si{w). (5.3)
i=1

Here g are the coupling strengths of the methyl group to the lattice and Co is the cosine

matrix element defined in [4]. The T; have the same meaning as the ¥; of (3.22). §;(w) is
the continuum version of the lattice transformation matrix S;,.

With the assumption S;(w) = 1/+/N and the definition

N
gsﬂalz‘gﬁ

j=tI
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the constant density of states (4.11) leads to the width
Th = dnQoe 1 (2Co))? (7 + 7} = 4 Qgor~ ' (g Coy Yoo/ T {(5.4)

where the approximations hold for low bandwidth @ and temperatures well below §25. The
ratio of the quasielastic width to the inelastic width (4.12) then becomes

2
% =s(£ﬂ.‘.) . (5.5)

For a methyl group with tunnel frequencies (4.10) we have approximately Cg = 1/80 and
¢ = (.06, from which we obtain

y
-2 ~0.35g2.
Va2

Assuming that the coupling constant g of the rotor—lattice coupling is of the order of the
lattice force constant, i.e. assuming g = 1, we see that within our model description. the
quasielastic line is much narrower than the elastic line, which is in accordance with the
experimental results [2].

By means of the fourth cumulant (5.2) we find that the truncation of the cumulant series
after the second term causes an error of less than 20% for phonon bandwidths greater than
@min = 0.1 and temperatures below g/2.

In figure 3 we display the quasielastic width for the Debye denmty of states (4.1).
Comparing the result with the corresponding width of the inelastic line, figure 2, we again
obtain the result that the guasielastic line is much narrower than the inelastic line.

b}

0.6 10~
04.107¢
0.2.207 . . .
Figure 3. The tunnel width of the quasielas-
tic curve as a function of temperature. The
full curve shows the width T, including all
R L G ARSI T R L T poptributions. The dotted curves display the
o 005 0.10 0.15 0.2¢  contribution [y from the fourth cumulant.

The contribution of the fourth cumulant to the width is negligible.

6. Interpretation of the shift and broadening of the tunnel line

In order to gain physical insight into the reasons for the shift of the tunnel frequency
o =g + @) we write it in a form different from (3.21). From (2.7) and (3.21) it follows
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that
W = —{V} = —Tr{Ve P} Trie P}

0 .00 )
= — Z--‘Z(no, S AL 1Y

no=0 nx=0
N
x exp(-—ﬁ Zw#(nﬁ + %)) (Trfe™PH 1. 6.1)
u=0
The states |ng,...,np} are the eigenstates of Hy (2.7) with occupation numbers n,. Up
to first order in perturbation theory the maitrix element {ng,...,ny|V|ng, ..., 2y) i3 the

difference of the eigenenergies of the Hamiltonians Hy, (system in the A state) and A — V
(system in the E state), corresponding to the same occupation numbers. Both Hj, and

Hy, — V are harmonic lattices, which posses eigenfrequencies w{} and wf , Tespectively.
Hence we may write

N
RO . NIV, .o mn)  —A+ D (@ — o)+ 1) (6.2)
=0

With this inserted in (6.1) we obtain

1 N N
@y=A+ 5 Z;}(wf -0ty @ = Z_:o(wf — wha(w]) (6.3)
u= Fl__

with the temperature-dependent average occupation numbers

oy 1

Here @; constitutes the location of the tunnel line at zero temperature, whereas @, is the
temperature-dependent shift of the tunnel line. Now consider the neutron scattering process
for which we assume that the system has A symmetry before the scattering event and E
symmetry afterwards. Before the scattering our model system is a harmonic lattice with
eigenfrequencies mﬁ' and mean energy

N
E' =) of M)+ 4.

=0

When the scattering event occurs in our madel, the pseudospin state changes from spin up
(A-state analogue) to spin down (E-state analogue). Accordingly, the mass of the zeroth
particle, which mimics the methyl group, increases from mq to mg/{1 — €), with € given in
(2.6). This in turn reduces the eigenfrequencies of the whole crystal:

wﬁ_gw’*

e YiL.

Keeping the average occupation numbers fixed, this means that the mean energy of the
crystal decreases. Equation (6.3) states that this decrease in crystal energy causes the
measured shift of the tunnel frequency. As the encrgy loss due to the modification of the
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oscillator frequencies is proportional to the occupation numbers of the state of the system it
follows, since the average occupation numbers are increasing functions of temperature, that
we always get a stronger shift when the temperature is raised. However, evenat T = 0 we
have a lowering of the tunnel frequency as compared to an isolated methyl group. It is due
to the zero-point energy of the lattice, which also decreases when the mass of the zeroth
particle increases.

The difference between (6.2) and (6.3} is that (6.2) yields the measured tunnel
frequencies, provided that the system is prepared t0 be in the pure state |ng,...,7nN),
whereas (6.3) refers to the case where the system is in thermal equilibrium with a heat bath
at temperature 7. In this case the measured tunnel frequency fluctuaies from neutron to
neutron around the average value given by (6.3). The width of the tunnel line is made of
just these fluctuations and may be calculated from (6.2):

N
7o =07 ((0s- ., | Ving, ... mn)) = Y (@f — 0’0’ (n,)
I[,]_::0
N
= 3 (@f — ol ) + 7)) (6.5)
u=0

where o%(-) denotes the variance. Noting that up to first-order perturbation theory we have
E A~ 2
w, —a, 2 —~€wuSy,

we see that apart from the constant factor =/2 the width ¥, coincides width the width ¥,
in (3.22), which has been obtained through the cumulant expansion, This means that our
stafistical interpretation given here fits well to the second-order cumulant expansion.

However, it should be noted that the explanation of the shift and the broadening of the
tunnel line presented in this section only refers to the harmonic model system. It is not
obvious how far it also applies to the original methyl group coupled to a (harmonic) crystal.
With methyl groups we have to deal with E- and A-symmetry states, whereas in our model
system we have dealt with the change of the mass of a lattice particle. The only connection
that has been made between both systems is (2.3), which links the lowest tunnel frequencies
of the methyl group to the model parameters of the harmonic system.

7. Conclusions

In this paper we used the cumulant expansion presented in [3] to deal with the harmonic
replacement and added to it the third and fourth cumuelant. It turns out that for not too narrow
phonon bandwidths (strong coupling) the higher cumulants are negligible when compared
to the second cumuiant. Only for very low bandwidths (low coupling) does the cumulant
expansion cease to be valid, where the actual limiting bandwidth depends on the tunnel
frequencies of the methyl group.

Within our models we find that the functional dependence of the shift and the width of the
tunnel line is determined by the density of states g(w) of the crystal. For low temperatures
the Debye density of states leads to a potential law, whereas a constant density of states
with 2 low bandwidth leads to an exponential (Arrhenius) law.

The quantitative comparison of the widths of the quasielastic and the inelastic line agrees
with the experimental result that the quasielastic line is narrower than the inelastic line.
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