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Abstract. In 1990, Hiiller modelled the temperature dependence of the inelastic lines of 
the tUMeUing spectrum of methyl groups, measured by neutmn scattering. using a harmonic 
substihltion system as a replacement for the methyl group. The results obtained lhere are based 
on a cumulant expansion that has teen restricted to the first two cumulants for a simplified 
venion of the solution of the equation of motion for the a+ operator, lacking time ordering. 
In order to verify the results. we perfom the cumulant expansion up to second order including 
time ordering. and alsn compute the lhird and fourth cumulants, but without considering time 
ordering. Using simple crystal models, we show that the time-ordering symbol may in fact be 
neglecled and that higher cumulants became important only when the density Of states is sharply 
peaked With the Debye density of states it huns out that for very low temperaNres the shift 
of the inelastic lines is proportional to T4, whereas the width increases proportionally to T’. 
Finally, we present results for the quasielastic line and discuss the mechanism that causes the 
shift and broadening of the inelastic lines. 

1. Introduction 

In this paper we are concerned with the rotational tunnelling of methyl groups that are 
embedded in a solid crystal. A methyl group has three indistinguishable protons. Hence, 
in principle, its quantum state should be completely antisymmetrized. However at the 
temperatures we are interested in (T < 50K). the excitation energies for the axial and 
tangential vibrations of these protons are much higher than the temperature. The protons are 
extremely localized at the end of their valence bonds with the carbon of the CH3 molecule. 
Further, we can safely neglect the overlap of the spatial part of the wavefunctions of the 
three protons, i.e. the only effect of antisymmetrization that needs to be included in this 
limit is the (very small) tunnelling splitting. Therefore we may consider the group to be 
rigid. As the barrier for a collective rotation of the three protons is rather low with respect 
to the temperature range of interest, the rigid group is not entirely fixed in position, but 
has a single degree of freedom, the rotation angle 4. The potential barrier V of rotation is 
necessarily $ir-periodic in 4. Taking only the lowest Fourier component of V leads to a 
cos 34 potential and thus to the Mathieu problem [I]. 

The inelastic l i e s  of the tunnelling spechum of methyl groups, measured by means of 
neutron scattering [2] or NMR spectroscopy, originate from transitions between the A- and 
E-symmetric states of the methyl group, which differ slightly in energy. As the methyl 
group is always part of a solid crystal, the measured energy spectra reflect the properties of 
the full system rather than those of an isolated (single) methyl group. 

In this paper we restrict the discussion to model crystals which contain no impurities 
such as paramagnetic ions, and which show no other kind of excitation than lattice vibrations 
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(phonons). In this case the eigenstates of the composite system have a definite (either A 
or E )  symmetry. Therefore, the symmetry of the actual state of the system can only be 
changed by some extemal agent, such as neutrons. In neutron scattering experiments the 
change of energy that is connected with the transition to a state of different symmetry is 
transferred to the neutron and measured by some spectrometer. It has been observed [2] 
that at almost zero temperature the spectrum consists of two sharp inelastic lines at -w 
and +U, where we call w the zero-temperature tunnel frequency, and another sharp line at 
zero energy. called the quasielastic line. When the temperature is raised, the inelastic lines 
shift towards zero energy and become broader. The quasielastic line does not shift, but also 
becomes broader. In general, the inelastic lines are broader than the quasielastic line. 

In this paper we consider the temperature dependence of the inelastic lines and the 
quasielastic line separately, using different models. In both cases the methyl group is not 
treated as a Mathieu problem [l], but is substituted by a harmonic system, which is then 
coupled to a harmonic crystal. 

These models are not new [3 ,4] ,  but here we treat them in more detail. In particular, 
we look for an interpretation of the shift and broadening of the inelastic tunnel lines within 
our model description. 

2. The model for the inelastic lines 

Due to the C3 symmetry of the methyl group, its eigenstates can be characterized by a C3 
symmetry label ( A ,  E", E b )  and a discrete index n [I]. The E"*b states are degenerate. 
The actual symmetry of the eigenstate of the isolated methyl group is a time-independent 
quantity that can only be changed by the influence of some extemal agents such as neutrons. 
The substitute shall share these properties. It is constructed to be a composed system 
consisting of a pseudospin and a harmonic oscillator with pseudospin-dependent frequency. 
The pseudospin states are taken to be analogous to the A- and E-symmetric states, but in 
the model no distinction is made analogous to Ea and Eb. The Hamiltonian is given by 

where po and qo denote the momentum and position operators of the oscillator which is 
substituted for the methyl group, and U, is the operator of  the pseudospin z-component with 
eigenvalues f1/2. The eigenenergies of Ho are 

E h  t) = Qo(n + 4) 
E ( n ,  = A+- f io(n + i) no > o (2.2) 

where we have set h s 1. We define 'tunnel frequencies' by 
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and adjust WO', 0: and the 'libration frequency' QO of the model to the values of the 
corresponding lowest two tunnel frequencies and the libration frequency of the original 
methyl group, respectively. All model parameten (A, 520, E )  are thereby uniquely 
determined. As for methyl groups, o; is greater than of, and E is a positive quantity. 

Having substituted the methyl group by an appropriate model based on the harmonic 
oscillator, we can now easily build the substitute into a lattice of harmonically bound 
particles without intemal degrees of freedom. The harmonic substitute will be considered 
as a lattice particle itself (with coordinates qo and PO), but with a mass that depends on the 
pseudospin state. The corresponding Hamiltonian is given by 

P i  
2mo 

V = - A  + E - .  

The mass of the zeroth particle is mo for all spin-up states (A-state analogues) and mo/( l  -E) 
for all spin-down states (E-state analogues). As V depends only on the momentum PO of 
the zeroth particle, this model is hamlation-invariant if we require E, OPV = 0 for the 
symmetric matrix 0. The inclusion of a term 6qi/2mo, which means the introduction of a 
spatially fixed potential, would destroy the translational invariance and lead to an unphysical 
frequency dependence of the phonon coupling. 

The Hilbert space on which HO acts is the tensor product of the infinite-dimensional 
harmonic oscillator space and the two-dimensional spin space. In the following we use the 
normal coordinates 

where the orthogonal transformation matrix S,, diagonalizes the matrix aPU/-. With 
the raising and lowering operators 

the transformed Hamiltonian is 

N 
H = H L  + (U, - f ) V  HL = ~ m , ( a , + a ,  + $) 

P=o 

3. The correlation function 

In the pseudospin formalism the spin-dependent part of the neutron scattering operator, 
which induces transitions between A- and E-states of the methyl group, is replaced by the 



8534 A Vowe 

raising and lowering operators of the pseudospin. Therefore the neutron scattering spectrum 
is the Fourier transform of the correlation function 

with 

u+(t) eiHru+(0)e-'H' 

where U+ and U- are the spin raising and lowering operators, respectively. The trace TrH 
in (3.1) is taken over the Hilbert space of H, which is the product space of the lattice space 
and the pseudospin space. 

We obtain C.(t) through the Heisenberg equation of motion for U+(!): 

U+@) = (l/i)[u+(t), HI = iV(!)u+(t) (3.3) 

with V(t)  eiH'Ve-iH'. It has the solution 

u+(t) = Texp(i i 'drV(r))u+(o)  (3.4) 

where T denotes Dyson's time-ordering symbol. As H does not flip the spin component of 
any product state, we may remove the spin-flip operators by inserting (3.4) into (3.1) and 
obtain 

with 

the trace being taken only over the lattice states. In the following we omit the subscript L. 
Noting that the a+a+ and aa terms in (2.7) only lead to oscillating contributions, we may 
approximate (3.5) by 

with 

where 

(3.9) 
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and 

ae(t) a,e-io*' (3.10) 

have been used. We solve (3.7) using a cumulant expansion, defined by 

(3.1 1) 

The evaluation of the C,, goes as follows. The average 

which is the nth term in the series expansion of the left-hand side of (3.11)+ consists of 
all sums of products of two-operator contractions of the creation and destruction operators, 
where the contraction of two operators oli(tl) and olz(f2). ai being either a creation or 
destruction operator, is just the time-ordered average (Toll (tl)o12(t2)). This follows from 
Wick's theorem I5.61. Now to obtain C, we drop all terms that contain two different time 
variables t,, fj that are not 'connected' by a contraction (Tf fP(&)au( l j ) ) .  For example, a 
term of the form 

(Tal (ti )a3(fz)) (Tolz(tl)ff4(tz)) 

contributes to the second cumulant Cz, whereas the term 

(Toll ( 1 I ) f f Z ( t l ) ) ( T ~ 3 ( ~ 2 ) ~ 4 ( ~ 2 ) )  

does not. For a more detailed description in terms of connected graphs see [61. Fortunately 
only very few terms withstand this elimination procedure. which greatly simplifies the 
evaluation of higher cumulants. 

The first cumulant is given by 

with 

(3.12) 

(3.13) 

For a periodic crystal we can use the fact that the modes p are completely characterized 
by a branch index 5 = 1, . . ., k and a wavevector 4 from the first Brillouin zone. As the 
function q ( q ) .  which relates the wavevector q to the mode frequency w for a given branch 
index 5 ,  approaches a continuous function for a macroscopic crystal, we may approximate 
the sums over 9 by integrals over o. To this end we introduce the density of states gc (U)  

and write Sq(w)  instead of Sop. Inserting (3.9) into (3.12) we obtain 

cl(t) = it- d ~ g ( o ) ~ ~ ( o ) o i i ( w )  (3.14) 2 'S 
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where for notational convenience we take account only of a single phonon branch. 
The second cumulant is given by 

(3.16) 

(3.17) 

Since we are interested in C( t )  for long times only, we may write for the time integrals 

and 

Inserting these approximations into the continuum version of (3.17). this yields 

Cz(t) = - , ~ ~ l t l  dwg2(W)Si(W)02 @(w) + T i ( @ ) ]  

1 . (3.18) 

" J  
The third and fourth cumulant are computed in a similar fashion, but in order to avoid 
technical complications we neglect Dyson's time-ordering symbol in (3.4). The resulting 
approximate expressions are 

With these results the correlation function (3.5) becomes 

C ( t )  = Le-=~e-f14/z 

0 Ei 00 +z1 +z* +z3 

2 - 
y E 7 2 - 7 4  - 

(3.20) 
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with 

and 

~2 E --E dogz(-o)S$(o)w2fi2(o) +E(w)]  
2 

(3.22) 
= 2/ 

- 

4 4  - y4 E - 64n3 / h g 4 ( ~ ) S ; ( o ) o  [6n (0) + lZ3(o) +E2(o) +ii(w)].  
24 

The Fourier transform of the correlation function (3.20) is a Lorentzian of width p centred 
at 53. In (3.21) 750 is the zero-temperature tunnel frequency. The quantities ZI, Zz and ?& 
represent the temperaturedependent conhibutions of the first, second and third cumulant, 
respectively, to the shift of the tunnel line. The term 7& is not present in 131, because 
Dyson’s time-ordering symbol had been neglected there. The contributions of the second 
and fourth cumulant to the tunnel width are given by p2 and p4, respectively. 

4. Crystal models 

In this section we wish to calculate the frequency and width of the inelastic tunnel line as 
given by (3.21) and (3.22) for two simple crystal models. We start with the density of states 
of the Debye model for a three-dimensional crystal 

where 00 is the cut-off frequency and N is the number of crystal atoms. We identify the 
cut-off frequency OD with the ‘libration’ frequency Qo of the harmonic model that mimics 
the methyl group, i.e. we set QO = oD. We also assume that all modes couple to the zeroth 
particle with the same strength: 

Inserting this in (3.21). we obtain 
3 - 

WO = A - EEOD 

and 

(4.2) 

(4.3) 
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where we have introduced the function 

The approximation in (4.4) is valid for temperatures well below the cut-off frequency WD.  

In an analogous manner we compute ?&. 5 3 :  

(4.6) 

with the approximation in (4.8) being valid for temperatures well below W. 

Figure 1. The tunnel frequency as a 
funciion of tempemhue. The full curve 
shows the tunnel frequency Z, including all 
conhibutions. The dotted c w e s  display the 
conuibulionsijz and 7j, from the second 
and third cumulang respectively, and the T 

0 0.05 0.10 0.15 0.20 approximation of the shin by a T4 law. 

For the purpose of a plot we set Qo = 1 and take a methyl group which has the tunnel 
frequencies [3] 

0;; = 0.001 0; = -0.029. (4.10) 

With these values we get the model parameter A = 0.016 from (2.3). In order to obtain 
06 as the tunnel frequency at zero temperature, we do not use (2.3) to evaluate E .  Instead, 
we use (4.3) which accounts for the zero point energy of the lattice and obtain E = 0.08. 
Figures 1 and 2 show the tunnel frequency Zj and the tunnel width 7. The contributions Z2, 
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FLgurc 2. The tunnel width as a 
function of temperature. The full curve 
shows the tunnel width 7* including 
all contributions. The dotted curves 

.__....___.._- / i d  display the conhibution Td from the 
T fourth cumulant and the approximation 0 , , , , ,  , , , , , , , ( , , , , , , ,  / , , )  , , , ,  :,,,- 

0 ~ 0.03 0.10 0.15 0.20 of the shifi by a 7' law. 

Z3 and Fa are also displayed in order to demonstrate that their influence can be neglected. 
It can be seen that the approximation Zi 0: T4 is quite good over the whole temperature 
range where the tunnel frequency is non-negative, whereas the width p increases as T7 only 
for temperatures up to 0.1. From the figures it fallows that neither the inclusion of time 
ordering in the calculation of the second cumulant nor the third and fourth cumulant have 
a significant impact on the results when the density of states of the Debye model is used. 

A somewhat different situation arises when a sharply peaked density of states is inserted 
in (3.21) and (3.22). A peaked density of states does not affect 370, 371 and 732 very much, 
but 7s3, F2 and F4 will yield much higher values than those that are obtained from the 
Debye model. This is due to the fact that the density of states is taken to a power greater 
than unity in the formulae for these latter quantities. 

We estimate the minimum acceptable width of the phonon band by using the density of 
states 

(4.11) 

which is constant in the range Qo(l fa) and zero elsewhere. where a is the relative width 
of the phonon band. For a small bandwidth a we insert (4.11) into (3.21) and (3.22) to 
obtain 

N 
f fQ0 

g(~) = --[e(@ - no(1 - ;CY)) - O(O - no(1 + $a))] 

(4.12) 

For temperatures well below the libration frequency 
width of the tunnel line by an Anhenius law with common activation energy no: 

we may approximate the shift and 

(4.13) - @, = -I,~oe-%/r y* = ;,,~a-'Qoe-b20/'. 2 

From (4.12) it follows that the maximum occupation number ii(Qo) for which the tunnel 
frequency is non-negative is given by 

2A 1 
ii(S-20) = - - -. €no 2 

(4.14) 
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The relative contribution of the third cumulant to the shift of the tunnel line is given by 

and the relative contribution of the fourth cumulant to the width is expressed by 

-zsii3(~0) i- izz(n0) + mn0) + 1 
1 + i i (Q0)  

(4.15) 

(4.16) 

With the methyl group tunnel frequencies (4.10) the minimum phonon bandwidth for 
which the above ratios (4.15) and (4.16) are less than 20% over the whole temperature range 
that leads to positive tunnel frequencies turns out to be ami,, N 0.2. The tunnel frequency 
is zero at T N 0.3. 

5. The quasielastic line 

A harmonic model for the quasielastic line is presented in [4]. It is based on transitions 
between E'- and Eh-state analogues. We use the result [41 

The tunnelling width is computed in the same way as for the inelastic line. via a cumulant 
expansion. The first and third cumulants are zero. The width resulting from the second 
cumulant is 

where we use the definition 

(5.3) 

Here 8; are the coupling strengths of the methyl group to the lattice and Col is the cosine 
matrix element defined in [4]. The have the same meaning as the Fi of (3.22). Si@) is 
the continuum version of the lattice transformation matrix ,Sig. 

With the assumption S,(w) = I/,,% and the definition 
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the constant density of states (4.11) leads to the width 

- 
r2 Y 4sr~+u-'(gCot)~ E' +TiJ Y_ 4n~ou-1(gCor)2e-'o/T (5.4) 

where the approximations hold for low bandwidth a and temperatures well below 00. The 
ratio of the quasielastic width to the inelastic width (4.12) then becomes 

For a methyl group with tunnel frequencies (4.10) we have approximately CO, = 1/80 and 
E = 0.06, from which we obtain 

- 
r2 - - Y 0.35g2. 
Y2 

Assuming that the coupling constant g of the rotor-lattice coupling is of the order of the 
lattice force constant, i.e. assuming g = 1, we see that within our model description the 
quasielastic line is much narrower than the elastic line, which is in accordance with the 
experimental results 121. 

By means of the fourth cumulant (5.2) we find that the truncation of the cumulant series 
after the second term causes an error of less than 20% for phonon bandwidths greater than 
amin LI_ 0.1 and temperatures below Q&. 

In figure 3 we display the quasielastic width for the Debye density of states (4.1). 
Comparing the result with the corresponding width of the inelastic line, figure 2, we again 
obtain the result that the quasielastic line is much narrower than the inelastic line. 

Figure 3. The twnel width of the quasielas- 
tic c w e  as a function of temperature. The 
NI c w e  shows the width r. including all 
contributions. The dotted curves display the 

. . .______._____------ 
7 

! , I , I , / , ! ! !  // , , ! , ! , !  Tr, 
0 

0 0.05 0.10 0.15 020 contribution Fa from the fourth cumulant. 

The contribution of the fourth cumulant to the width is negligible. 

6. Interpretation of the shift and broadening of the tunnel line 

In order to gain physical insight into the reasons for the shift of the tunnel frequency 
Et 730 + 731 we write it in a form different from (3.21). From (2.7) and (3.21) it follows 
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that 

Gt = - (V)  = -Tr(Ve-s”Lt/Tr(e-sHL] 

The states Ino, . . . , nn) are the eigenstates of HL (2.7) with occupation numbers n,. Up 
to first order in perturbation theory the matrix element (no , .  . . , nplVlno,. . . , n ~ )  is the 
difference of the eigenenergies of the Hamiltonians HL (system in the A state) and HL - V 
(system in the E state), corresponding to the same occupation numbers. Both HL and 
HL - V are harmonic lattices, which posses eigenfrequencies U,” and W E ,  respectively. 
Hence we may write 

N 

(6.2) 1 (no,. . .,nNIVlnO, . ,nN) N -A f Z(O$ - W E ) ( n p  + 3 ) .  
P O  

With this inserted in (6.1) we obtain 

with the temperaturedependent average occupation numbers 

- 1 
n(w) - 

eRw - 1‘ (6.4) 

Here 720 constitutes the location of the tunnel line at zero temperature, whereas GI is the 
temperature-dependent shift of the tunnel l i e .  Now consider the neutron scattering process 
for which we assume that the system has A symmetry before the scattering event and E 
symmetry afterwards. Before the scattering our model system is a harmonic lattice with 
eigenfrequencies 0,” and mean energy 

N 
-A E = CO,” F(w,”) + $1. 

p=O 

When the scattering event occurs in our model, the pseudospin state changes from spin up 
(A-state analogue) to spin down (E-state analogue). Accordingly, the mass of the zeroth 
particle, which mimics the methyl group, increases from mo to ma/( I - e ) ,  with E given in 
(2.6). This in tum reduces the eigenfrequencies of the whole crystal: 

w,” 60; vp. 

Keeping the average occupation numbers fixed, this means that the mean energy of the 
crystal decreases. Equation (6.3) states that this decrease in crystal energy causes the 
measured shift of the tunnel frequency. As the energy loss due to the modification of the 
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oscillator frequencies is propoltional to the occupation numbers of the state of the system it 
follows, since the average occupation numbers are increasing functions of temperature, that 
we always get a stronger shift when the temperature is raised. However, even at T = 0 we 
have a lowering of the tunnel frequency as compared to an isolated methyl group. It is due 
to the zero-point energy of the lattice, which also decreases when the mass of the zeroth 
particle increases. 

The difference between (6.2) and (6.3) is that (6.2) yields the measured tunnel 
frequencies, provided that the system is prepared to be in the pure state I f lo, .  . . , n ~ ) ,  
whereas (6.3) refers to the case where the system is in thermal equilibrium with a heat bath 
at temperature T. In this case the measured tunnel frequency fluctuates from neutron to 
neutron around the average value given by (6.3). The width of the tunnel line is made of 
just these fluctuations and may be calculated from (6.2): 

where uz(.) denotes the variance. Noting that up to first-order perturbation theory we have 

E A  ww -ow 2 -€ups& 
we see that apart from the constant factor n/2 the width yt coincides width the width 
in (3.22). which has been obtained through the cumulant expansion. This means that our 
statistical interpretation given here fits well to the second-order cumulant expansion. 

However, it should be noted that the explanation of the shifi and the broadening of the 
tunnel l i e  presented in this section only refers to the harmonic model system. It is not 
obvious how far it also applies to the original methyl group coupled to a (harmonic) crystal. 
With methyl groups we have to deal with E- and A-symmetry states, whereas in our model 
system we have dealt with the change of the mass of a lattice particle. The only connection 
that has been made between both systems is (2.3), which links the lowest tunnel frequencies 
of the methyl group to the model parameters of the harmonic system. 

7. Conclusions 

In this paper we used the cumulant expansion presented in [3] to deal with the harmonic 
replacement and added to it the third and fourth cumulant. It turns out that for not too narrow 
phonon bandwidths (strong coupling) the higher cumulants am negligible when compared 
to the second cumulant. Only for very low bandwidths (low coupling) does the cumulant 
expansion cease to be valid where the actual limiting bandwidth depends on the tunnel 
frequencies of the methyl group. 

Within our models we find that the functional dependence of the shift and the width of the 
tunnel line is determined by the density of states g(w) of the crystal. For low temperatures 
the Debye density of states leads to a potential law, whereas a constant density of states 
with a low bandwidth leads to an exponential (Arrhenius) law. 

The quantitative comparison of the widths of the quasielastic and the inelastic line agrees 
with the experimental result that the quasielastic line is narrower than the inelastic line. 
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